Mergesort



Merqgesort

yMergesort (divide-and-conquer)
> Divide array into two halves.

A|L|G|O|R I|T| H| M|S divide




Mergesort

yMergesort (divide-and-conquer)
> Divide array into two halves.
- Recursively sort each hallf.

A|L|G|O|R I|T| H| M|S divide

A G|L|O| R H/ I M| S| T sort




Mergesort

yMergesort (divide-and-conquer)

> Divide array into two halves.

- Recursively sort each hallf.

- Merge two halves to make sorted whole.

A|L|G|O|R I|T| H| M|S divide

A G|L|O| R H/ I M| S| T sort

A G H I L MO R|S |T merge




Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.

> Repeat until done.

smalles

1

t

A

G

smallest

1

H

auxiliary array



Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

smallest smallest
1 | 1
A G|IL|O| R H/ I M| S| T

m auxiliary array




Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.

> Repeat until done.

smallest

1

A |G

L

0)

c [N

smallest

1

H

auxiliary array



Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

smallest

1

A |G

L

0)

R

5 [

smallest
1
H I | M

auxiliary array



Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

smallest smallest
1 | 1
A G|IL|O| R H/ I M| S| T

A G| H |I auxiliary array




Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

smallest

1

Al G| L

0)

R

smallest

1

M

L i

auxiliary array



Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

smallest smallest

1 | 1
A G|IL|O| R H I M| S
A|G|H M| o

auxiliary array



Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

smallest

1

A G| L O

R

smallest

1

I M

S

ol R

auxiliary array



Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.

> Repeat until done.

first half
exhausted smallest
['] | |
AlG|L|[O]|R H s 5]

R

auxiliary array



Merging

rMerge.

- Keep track of smallest element in each sorted half.
> Insert smallest of two elements into auxiliary array.
> Repeat until done.

first half
exhausted smallest
['] 1 |

A|lG H I L M| O R Sﬂ auxiliary array




Implementing Mergesort

Item aux[MAXN] ; uses scratch array

void mergesort(Item a[], int left, int right) {
int mid = (right + left) / 2;
if (right <= left)
return;
mergesort (a, left, mid);
mergesort(a, mid + 1, right);
merge (a, left, mid, right);




Implementing Merge (Idea 0)

mergeAB(Item c[], Item al[], i1nt N, Item b[], int M )
{ int 1, 3, k;
for (1 =0, 3 =0, k=20, k < N+M; k++)

if (1 == N) { c[k] = b[j++]; continue; }
if (J == M) { cl[k] = a[i++]; continue; }
clk] = (less(al[i1], b[3J])) ? ali++] : b[J++];



Imbplementina Meraesort

merge (see Sedgewick Program 8.2)

void merge (Item a[], int left, int mid, int right) {
int i, j, k;

for (1 = mid+1l; i1 > left; i--)
aux[i-1l] = a[i-1];

for (j = mid; j < right; j++)
aux[right+mid-j] = a[j+1];

copy to
temporary array

for (k = left; k <= right; k++)
if (ITEMless(aux[i], aux[j]))
alk] = aux[i++];
else
alk] = aux[j--]’

merge two sorted
sequences




Mergesort Demo

» The auxilliary array used in the merging
operation is shown to the right of the array a[], going
from (N+1, 1) to (2N, 2N).

» The demo is a dynamic representation of the algorithm
in action, sorting an array a containing a permutation of
the integers 1 through N. For each i, the array element
ali] is depicted as a black dot plotted at position (i, a[il).
Thus, the end result of each sort is a diagonal of black
dots going from (1, 1) at the bottom left to (N, N) at the
top right. Each time an element is moved, a green dot is
left at its old position. Thus the moving black dots give
a dynamic representation of the progress of the sort
and the green dots give a history of the data-movement
cost.


http://www.cs.princeton.edu/courses/archive/spr03/cs226/demo/merge/MergeSort.html

