

Mergesort (divide-and-conquer)
◦ Divide array into two halves.

A L G O R I T H M S

divide A L G O R I T H M S

Mergesort (divide-and-conquer)
◦ Divide array into two halves.

◦ Recursively sort each half.

sort

A L G O R I T H M S

divide A L G O R I T H M S

A G L O R H I M S T

Mergesort (divide-and-conquer)
◦ Divide array into two halves.

◦ Recursively sort each half.

◦ Merge two halves to make sorted whole.

merge

sort

A L G O R I T H M S

divide A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

auxiliary array

smallest smallest

A G L O R H I M S T

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

A

auxiliary array

smallest smallest

A G L O R H I M S T

A

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

G

auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

H

auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

I

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

L

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

M

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

O

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

R

auxiliary array

first half

exhausted smallest

A G L O R H I M S T

A G H I L M O R

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

S

auxiliary array

first half

exhausted smallest

A G L O R H I M S T

A G H I L M O R S

Merge.
◦ Keep track of smallest element in each sorted half.

◦ Insert smallest of two elements into auxiliary array.

◦ Repeat until done.

T

Item aux[MAXN];

void mergesort(Item a[], int left, int right) {

 int mid = (right + left) / 2;

 if (right <= left)

 return;

 mergesort(a, left, mid);

 mergesort(a, mid + 1, right);

 merge(a, left, mid, right);

}

mergesort (see Sedgewick Program 8.3)

uses scratch array

mergeAB(Item c[], Item a[], int N, Item b[], int M)

 { int i, j, k;

 for (i = 0, j = 0, k = 0; k < N+M; k++)

 {

 if (i == N) { c[k] = b[j++]; continue; }

 if (j == M) { c[k] = a[i++]; continue; }

 c[k] = (less(a[i], b[j])) ? a[i++] : b[j++];

 }

 }

void merge(Item a[], int left, int mid, int right) {

 int i, j, k;

 for (i = mid+1; i > left; i--)

 aux[i-1] = a[i-1];

 for (j = mid; j < right; j++)

 aux[right+mid-j] = a[j+1];

 for (k = left; k <= right; k++)

 if (ITEMless(aux[i], aux[j]))

 a[k] = aux[i++];

 else

 a[k] = aux[j--];

}

merge (see Sedgewick Program 8.2)

copy to

temporary array

merge two sorted

sequences

 Mergesort The auxilliary array used in the merging
operation is shown to the right of the array a[], going
from (N+1, 1) to (2N, 2N).

 The demo is a dynamic representation of the algorithm
in action, sorting an array a containing a permutation of
the integers 1 through N. For each i, the array element
a[i] is depicted as a black dot plotted at position (i, a[i]).
Thus, the end result of each sort is a diagonal of black
dots going from (1, 1) at the bottom left to (N, N) at the
top right. Each time an element is moved, a green dot is
left at its old position. Thus the moving black dots give
a dynamic representation of the progress of the sort
and the green dots give a history of the data-movement
cost.

http://www.cs.princeton.edu/courses/archive/spr03/cs226/demo/merge/MergeSort.html

